Developing scholarly projects in education: A primer for medical teachers

THOMAS J. BECKMAN & DAVID A. COOK
Mayo Clinic College of Medicine, Rochester, MN, USA

Abstract
Boyer and Glassick’s broad definition of and standards for assessing scholarship apply to all aspects of education. Research on the quality of published medical education studies also reveals fundamentally important elements to address. In this article a three-step approach to developing medical education projects is proposed: refine the scholarly question, identify appropriate designs and methods, and select outcomes. Refining the scholarly question requires careful attention to literature review, conceptual framework, and statements of problem and study intent. The authors emphasize statement of study intent, which is a study’s focal point, and conceptual framework, which situates a project within a theoretical context and provides a means for interpreting the results. They then review study designs and methods commonly used in education projects. They conclude with outcomes, which should be distinguished from assessment methods and instruments, and are separated into Kirkpatrick’s hierarchy of reaction, learning, behavior and results.

Introduction
In 1990 Boyer proposed a four-category framework of scholarship: Discovery, Integration, Application and Teaching (Boyer 1990). As the name implies, Discovery scholarship is finding new knowledge, usually through experimental research. Integration scholarship is synthesizing knowledge across disciplines and showing the relationships between individual parts of the whole. Application scholarship is harnessing knowledge in a useful and practical fashion. Teaching scholarship is the ability to communicate knowledge in ways that deepen learners’ understanding and allow them to place information into a larger context. Scholarship, regardless of the category, should be disseminated in peer-reviewed forums and expanded upon by a wide community of scholars (Hutchings & Schulman 1999; Beattie 2000; Fincher & Work 2006).

Glassick advanced Boyer’s work by defining six standards for assessing scholarship (Glassick et al. 1997; Glassick 2000). Establishing Clear Goals includes outlining the aims of a project and articulating statements of problem and study intent. Adequate Preparation requires a critical and thorough literature review. Appropriate Methods reflects the use of proper study design and the selection of meaningful outcomes. Effective Communication is apparent in a logically organized manuscript, with, for instance, an Introduction that progresses from broad concepts to specific. Reflective Critique uncovers threats to validity and shows how a given project increases knowledge and understanding in education. The last standard, Outstanding Results, will be achieved only when the other standards have been carefully addressed. Whether developing a curriculum, writing a review article, or conducting research, Glassick’s standards are the yardstick by which education scholarship is measured.

With the emergence of medical education as a field of scientific inquiry, authorities have requested the application of traditional research designs (Norman 2003; Carney et al. 2004) and expert guidelines (Moher et al. 1999; Moher et al. 2001; Des Jarlais et al. 2004). Authorities have also identified the need to address essential elements of education scholarship and research. For example, Bordage’s analysis of manuscripts submitted to the Association of American Medical Colleges’
Research in Medical Education Proceedings revealed that manuscripts were rejected due to inappropriate instrumenta-
tion, insufficient problem statement, and incomplete, inaccu-
rate or outdated literature review (Bordage 2001). Conversely,
strengths of accepted manuscripts were importance of the
problem studied and sound study design. Chubin and Hackett
(1990) showed that manuscripts were rejected from Social
Studies of Science owing to poor argumentation and ignorance
of the literature. Our systematic review of articles published in
six major medical education and general medical/surgical
journals demonstrated that essential elements of scientific
reporting were often missing (Cook et al. in press). Specifically,
only 55% presented a conceptual framework, 45% critically reviewed the literature and 16% presented a
statement of study design. While most presented a statement of
study intent (purpose, research question or hypothesis), the
majority of these statements were incomplete. All this under-
scores the need for greater attention to the scholarly
assessment of education studies, such as formulating state-
ments of problem and study intent (clear goals); consulting
expert guidelines, carefully reviewing the literature and
reflecting on conceptual framework (adequate preparation);
and utilizing sound instruments and study designs (appropriate
methods).

We propose a three-step approach to designing scholarly
education projects (Table 1). Step 1 is refining the study question. Arguably, every scholarly endeavor begins with
thoughtful reflection that eventually leads to a scholarly
question. Consider a clinician who observes that his/her
teaching experience is enhanced by discussing teaching
situations and learning principles with his/her experienced
colleagues. Subsequently, that teacher wonders: Would
attending physicians enjoy increased satisfaction if they staffed
residents in a group setting, versus independently? Refining
this question would require a literature review to determine
whether anyone else has investigated this or similar questions.
Therefore, gaps in the literature could be identified, leading to
a problem statement. Likewise, finding convincing reasons,
like existing theories or previous approaches, to suggest that
teaching in a group setting would be satisfying would provide
a conceptual framework, and ultimately a more refined study
question. Step 2 is identifying a research study design. In the
current example, a randomized controlled design could be
implemented by assigning half of the faculty to teach residents
in the group setting, and the other half to teach independently.
Step 3 is selecting outcomes. In this case, the scholarly question
identifies teacher satisfaction as the desired outcome.
Measuring this outcome could be accomplished by surveying
faculty (method) with a Likert-scaled questionnaire (instru-
ment). To follow is a more detailed discussion and practical
elements of this three-step process.

Table 1. Steps for developing scholarly medical education projects.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Components and examples</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 1. Refine the Study Question | Literature Review: Identifying existing studies and understanding the relevant scholarly environment
Problem Statement: Describes the overarching context of the study and conveys how it will advance the literature
Conceptual Framework: A theory, model or approach that situates the study question within a theoretical context and explains the results
Statement of Study Intent: May be stated as a question, hypothesis or goal | |
| 2. Identify Designs and Methods* | Experimental: Manipulating an independent variable and studying its effect on a dependent variable
Observational: Does not involve altering the events under study
Validity: Collecting evidence to support valid interpretations of instrument scores
Qualitative: Data are words
Systematic Reviews: Utilizing explicit methods to identify and summarize previously published studies on a specific subject | |
| 3. Select Outcomes | Outcome: Outcomes are conceptual
Outcome Methods: Outcome methods (e.g. surveys) are general approaches to assessing a given outcome
Instruments: Instruments (e.g. questionnaires) are specific devices for systematically collecting data | |

Notes: *Sometimes the distinction between design and method is uncertain. See text for more detailed discussion. Although this table illustrates study designs and methods commonly used in medical education studies, the list is not intended to be exhaustive.

Step 1: Refine the study question

Refining a study question requires attention to a literature review, problem statement, conceptual framework and state-
ment of study intent, all of which are typically found in the
introduction portion of a manuscript or study proposal (McGaghie et al. 2001). The topic of interest is developed by
progressing from general to specific concepts and from the
known to the unknown (McGaghie et al. 2001). In this way a well-crafted introduction sets the stage for a credible study question.

Literature review

Incomplete literature review is a primary reason for manuscript rejection (Bordage 2001) and a critical literature review was found in only 45% of published education studies (Cook et al. in press). The objectives of a literature review are to integrate knowledge, establish the conceptual framework and scholarly question, clarify the study design and methods, and justify interpretations of study findings (Crandall et al. 2001).

Reviewing the medical education literature is challenging due to a lack of comprehensive databases for education, abundant references outside medical education (e.g. psychology, sociology and general education), and disagreement between medical education themes and medical subject headings and key words (Reed et al. 2005). Nevertheless, solutions to these challenges exist. Numerous databases including MEDLINE, PubMed, PsychINFO, Educational Resource Information Center (ERIC), British Educational Index (BEI), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) should be searched (Haig & Dozier 2003; Reed et al. 2005). Also, surrogate search terms should be used. For example, when seeking reliable instruments in a given field of study, in addition to the search terms ‘reliable’ and ‘instrument’ one should also try ‘psychometric’, ‘validity’, and ‘evaluation studies’. Finally, consulting experts and reviewing the bibliographies of selected articles will yield valuable references that would otherwise be missed.

Problem statement

The Problem Statement is an essential component of any well-written introduction and its omission is a frequent reason for manuscript rejection (Bordage, 2001). The Problem Statement describes the overarching context of the study and conveys how it will advance the literature. In this way, the Problem Statement also helps readers foresee the Statement of Study Intent (McGaghie et al. 2001). Consider the following example:

There is a growing body of research on journal peer review. For example, JAMA has dedicated three complete issues in the past decade . . . to peer review studies and essays, and the Council of Biology Editors . . . also published a book of papers in 1991 from the First International Congress on Peer Review in Biomedical Publishing. However, few studies exist that analyze the content of reviewers’ comments when reviewers are recommending rejection or acceptance of a manuscript. (Bordage 2001)

The first two sentences in this excerpt describe the study’s context, whereas the last sentence conveys how the study will advance the literature and announces the Statement of Study Intent (see below). Notice that the last sentence becomes a pivotal point in the introduction as it moves from what is known to what is yet to be (i.e. the current study). Therefore, problem statements often contain transitions of contrast like ‘however’, ‘nevertheless’ or ‘conversely’.

Conceptual framework

We cannot overemphasize the importance of Conceptual Framework. It is a theory, an approach or a model for how things work that situates a research question within the appropriate theoretical context. It guides the selection of study variables (McGaghie et al. 2001) and ultimately provides a means to interpret the study results by allowing for a ‘why’ or ‘because’. Finally, the Conceptual Framework is like glue that unites a body of thought by refining existing theories, developing new theories and providing a basis for further scholarship (Prideaux, 2002; Prideaux & Bligh, 2002; Des Jarlais et al. 2004). Consider this example of a Conceptual Framework stated as a theory:

Gagne et al. . . . proposed an information-processing model of learning. This model assumes answering a low-level recall question requires location of information in ‘long-term’ memory, retrieval into ‘working’ memory, verification that the information retrieved answers the question, and, finally, answering the question. It is implied that some minimum time is required to complete this process effectively. More complex questions require application of known information to unknown situations and assessment of whether the application of the old information to the new situation is correct Given this model, it is hypothesized that more time is required to answer more complex questions. (Schneider et al. 2004)

Another example illustrates a Conceptual Framework stated as a model or approach:

General medicine services are often comprised of medically complex patients with challenging psychosocial issues, thus allowing general internists the opportunity to model intensive physician–patient and teacher–learner dialogues and the application of a broad knowledge base. Cardiology services, on the other hand, are generally comprised of patients with focused problems (e.g., acute coronary syndromes and arrhythmias), thus allowing cardiologists the opportunity to model the application of a narrow and deep knowledge base. Since general internists and cardiologists model different behaviors and teach different skills, we would also expect assessments of these faculty members to reflect different latent variables (constructs). (Beckman et al. 2006)

Stating a Conceptual Framework is particularly important in the social sciences, psychology and medical education, because research questions in these disciplines often hinge on one of several complementary or contrasting theories. Conversely, in the biomedical sciences underlying theories or
mechanisms may be sufficiently well established as to allow marked abbreviation or even omission. All this may explain our prior finding that Conceptual Frameworks are reported more frequently in medical education journals than in non-education journals (Cook et al. in press).

Statement of study intent

The Statement of Study Intent, which is usually placed last in the Introduction (McGaghie et al. 2001) or first in the Methods, may be worded as a scholarly question, hypothesis, or statement of goal, purpose or aim. Consider these examples.

- The scholarly question: ‘How do PBL [Problem Based Learning] and non-PBL students compare in terms of performance in an anatomy test consisting of non-contextual fact-oriented items and clinically contextualised items?’ (Prince et al. 2003)
- The hypothesis: ‘This study investigates the hypothesis that the feedback provided by SAIL can improve the quality of hospital doctors’ written communication.’ (Fox et al. 2004)
- The goal statement: ‘the goal of this study was to better understand the nature of strengths and weaknesses in medical education reports by analyzing the ratings and comments made by external reviewers’. (Bordage 2001)

The focal point of any study is the Statement of Study Intent. Morrison (2002) asserts, ‘It is more important to understand the question than to find the answer’. Others rejoin, ‘The single most important component of a study is the research [scholarly] question’ (Marks et al. 1988; Bordage & Dawson 2003). The Statement of Study Intent consolidates the literature review, conceptual framework and problem statement, and clarifies the study variables.

Bordage and Dawson (2003) identified important steps in formulating a scholarly question. First consider the topic of study. In this case, the FINER mnemonic proves useful (Hulley & Cummings 1988). The topic should be Feasible, Interesting, Novel, Ethical and Relevant. Second, review the literature to confirm that your scholarly question has not been answered previously. Third, identify both the intervention (independent variable) and the outcome (dependent variable). Note that operationally defining study variables within the scholarly question facilitates study design. Operational definitions describe not only the variable (e.g. ‘active-reflective learning style’), but also the way that it will be identified (e.g. ‘assessed using Kolb’s Learning Style Inventory’). Fourth, determine whether you seek a difference or an association. For example, ‘Is cognitive structuring of knowledge better among learners in a Problem Based Learning (PBL) program than those in a traditional program?’ looks for a difference. Conversely, ‘Is there a correlation between attendance at PBL sessions and test scores?’ looks for an association. Fifth, identify the target population to which you will generalize the results. Researchers utilize a sample, which belongs to a sample population, which in turn belongs to a target population. The generalizability of study findings will be determined by the degree of similarity between the sample and the population, and by the study methods (e.g. findings from multi-institutional studies are more generalizable than from single institution studies). Finally, always hypothesize what the results will be.

Step 2: Identify study designs and methods

A major reason for manuscript acceptance is sound study design (Bordage 2001) and explicit design statements are under-reported in published education studies (Cook et al. in press). Hence, contemplating study design early in the development of any education study, and explicitly stating the design in the corresponding manuscript, is crucial. We discuss

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Quantitative</th>
<th>Qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Numbers</td>
<td>Words [e.g. field notes, interviews, focus groups, video tapes] that reflect ordinary events and are grounded in natural settings</td>
</tr>
<tr>
<td>Reasoning Process</td>
<td>Hypothetical-deductive</td>
<td>Inductive</td>
</tr>
<tr>
<td>Function of the Investigator</td>
<td>Uninvolved observer</td>
<td>Empathetic participant; integrates findings within the study context</td>
</tr>
<tr>
<td>Goal of the Study</td>
<td>Identify associations and causal relationships between variables</td>
<td>Understand circumstances from the perspectives of the study subjects</td>
</tr>
<tr>
<td>Typical Study Design</td>
<td>Experiment</td>
<td>Grounded Theory: Theories are not identified a priori, but are discovered as the study unfolds</td>
</tr>
<tr>
<td>Generalizing Study Findings</td>
<td>Ideally, quantitative research findings generalize to other settings</td>
<td>Generalizability may not be possible, and the user must determine whether results apply to his/her particular setting</td>
</tr>
<tr>
<td>Limitations</td>
<td>Numerical data can be perceived as less ‘human’, and may therefore be less engaging and persuasive. Also, quantitative methods may fail to reveal unanticipated findings</td>
<td>Subjective analysis increases the potential for biased data interpretation</td>
</tr>
</tbody>
</table>

Notes: Increasingly, qualitative and quantitative methods are used in the same study. (For more information see: Miles & Huberman 1994; Greenhalgh & Taylor 1997; Fraenkel & Wallen 2003; Kennedy & Lingard 2006.)
below the study designs and methods that seem to occur commonly in the medical education literature, although we realize this is not an exhaustive list. Additionally, we realize that not all education scholarship is research, and research can be both qualitative and quantitative (Table 2). Nevertheless, one should identify and understand the category of their scholarly approach and proceed in a thoughtful and systematic way.

Experimental and observational studies

When designing clinical research the fundamental question is whether or not to alter the events under study. If the answer is yes, then the design is experimental, and if the answer is no, then the design is observational (Hulley & Cummings, 1988). For observational studies it is further determined whether to take measurements on one occasion (e.g. a cross-sectional study) or on several occasions (e.g. a longitudinal study such as a cohort study). Recall that not all studies are created equal. At the top of the evidence pyramid are randomized controlled trials, followed by cohort studies, case control studies, case series, and at the bottom of the pyramid is expert opinion (Oxford Centre for Evidence Based Medicine, 2006). Experts have called for the application of these traditional study designs to education scholarship (Carney et al. 2004), but we have observed that even randomized controlled trials do not account for all sources of study variance, such as learning outside the curriculum and variation in teaching quality and style (Beckman & Cook 2004).

Table 3. Experimental study designs.

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Experimental</td>
<td></td>
<td></td>
<td>Random assignment</td>
</tr>
<tr>
<td>Post-test only</td>
<td>R X1 O</td>
<td>R X2 O</td>
<td></td>
</tr>
<tr>
<td>Pre-test-Post-test</td>
<td>R O X1 O</td>
<td>R O X2 O</td>
<td></td>
</tr>
<tr>
<td>Solomon 4-Group</td>
<td></td>
<td></td>
<td>Controls for the effect of a pre-test by giving one half of the groups the pre-test and post-test and the other half the post-test only</td>
</tr>
<tr>
<td>Pre-test only</td>
<td>R O X1 O</td>
<td>R O X2 O</td>
<td></td>
</tr>
<tr>
<td>Post-test only</td>
<td>R O X1 O</td>
<td>R O X2 O</td>
<td></td>
</tr>
<tr>
<td>Pre-test-Post-test</td>
<td>R O X1 O</td>
<td>R O X2 O</td>
<td></td>
</tr>
<tr>
<td>Static Group Comparison</td>
<td></td>
<td></td>
<td>Uses groups that exist at the start of the study (e.g. different academic years, different classes)</td>
</tr>
<tr>
<td>Post-test Only</td>
<td>X1 O</td>
<td>X2 O</td>
<td></td>
</tr>
<tr>
<td>Pre-test-Post-test</td>
<td>O X1 O</td>
<td>O X2 O</td>
<td></td>
</tr>
<tr>
<td>Single Group</td>
<td></td>
<td></td>
<td>No comparison group</td>
</tr>
<tr>
<td>One Shot Case Study</td>
<td>X O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Group Pre-test-Post-test</td>
<td>O X O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: R = random assignment, NR = non-random assignment, O = Observation (e.g. pre- or post-test), X = exposure of a group (X1 is "group 1" and X2 is "group 2") to an intervention or alternate intervention. (For more information see: Campbell & Stanley, 1966; Fraenkel & Wallen, 2003.)

Experimental studies manipulate an independent variable and assess its effect on a dependent variable (Fraenkel & Wallen 2003). Experiments are subdivided into single-group, static group, quasi-experimental and true experimental designs (Table 3) (Campbell & Stanley 1966; Fraenkel & Wallen 2003). The weakest study designs use one group of subjects (no comparison or control). Static group designs use unassigned groups of participants that existed before the study began (e.g. different classes or grades). In quasi-experimental designs, subjects are assigned to groups by the investigator; however, the assignment is non-random. In the most rigorous design—true experimental—participants are randomly assigned to groups. Note that while all experimental studies might demonstrate causal relationships, randomized study designs provide the strongest causal argument. Yet even randomized education studies can be hopelessly flawed (Norman 2003; Beckman & Cook 2004). Certainly, a carefully designed quasi-experimental study could be more rigorous than a poorly designed randomized control trial. Therefore, randomization is not always feasible or desirable in educational research.

Observational studies determine relationships between variables that are not manipulated. While such studies cannot establish causality, they suggest causal relationships and generate interesting hypotheses. Two categories of observational studies commonly used in education are correlational and causal-comparative (Fraenkel & Wallen 2003). Correlational studies determine usually occurring relationships between variables; correlations between these variables can be positive (convergent) or negative (divergent). Causal-comparative studies explore relationships between groups that already exist separately in nature. Causal-comparative studies can thus be useful in identifying differences between groups such as physicians and surgeons, doctors and nurses, medical students and dental students, etc.
Evidence source	Definition	Examples
Content | The relationship between a test’s content and the construct it is intended to measure. Refers to themes, wording, and format of items on an assessment instrument. Includes analyses by experts regarding how adequately items represent the content domain. Also includes development strategies to ensure appropriate content representation. | Surveying experienced teachers regarding the adequacy and representativeness of proposed instrument items. Choosing items previously utilized in similar settings. Developing instruments based on existing literature and established educational theories.
Response process | Analyses of responses, including the actions, strategies and thought processes of individual respondents or observers. Differences in response processes may reveal sources of variance that are irrelevant to the construct being measured. Also includes instrument security, scoring and reporting of results. | Interviewing and studying learners regarding factors that influence the ratings they assign to teachers. Analyzing varying response patterns among different categories/levels of learners.
Internal structure | The degree to which individual items within the instrument fit the underlying constructs. Items measuring a unidimensional construct should be homogeneous, while items measuring complex constructs should not. Most often reported as measures of internal consistency reliability and factor analysis. | Using factor analysis to determine the dimensional structure of an instrument’s scores, and determining the reliability of scores. Studying differential functioning of items among a homogeneous group of evaluators.
Relations to other variables | The relationship between scores and other variables relevant to the construct being measured. Relationships may be positive (convergent or predictive) or negative (divergent or discriminant) depending on the constructs being measured. | How well do teachers’ assessment scores predict learners’ performance on high-stakes examinations, or their choice of a medical specialty? Do scores correlate with other measures of the same construct? Can results of an evaluation be generalized from one setting to another, similar setting?
Consequences | Assessments are intended to have some desired effect (e.g. improve teaching and learning performance), but they also have unintended effects. Evaluating such consequences can support or challenge the validity of score interpretations. | Does an assessment of teaching accompanied by feedback improve overall course evaluations (or students’ scores on high-stakes examinations)? Do equally qualified teachers’ performances on clinical teaching assessments correlate with factors that are not being measured, such as gender or ethnicity?

Source: Beckman et al. (2005). Adapted with permission.

Validity studies

Scores from education instruments such as teaching assessments, survey questionnaires and knowledge tests require valid interpretations to be meaningful (Downing 2003; Beckman et al. 2005; Cook & Beckman 2006). Scores are valid to the extent that they realistically portray the phenomenon of interest. The purpose of a validity study is to collect evidence supporting the interpretations of an instrument’s scores.

Validity is defined as the ‘degree to which evidence and theory support the interpretations of test (and assessment) scores’ (American Education Research Association et al. 1999). This definition underscores several important points. First, validity is not present or absent, but occurs by degree. Second, valid interpretations are always grounded in evidence and theory. Third, validity refers not to tests and instruments, but to the interpretation of test and instrument scores (Messick 1993; Downing 2003; Cook & Beckman 2006). Furthermore, validity is considered a hypothesis (Messick 1993; Downing 2003; Cook & Beckman 2006) and the decision to accept (or reject) this hypothesis will depend on the weight of evidence for (or against) the hypothesis. The validity hypothesis is continually enhanced or contravened by new evidence, resulting in a never-ending cycle of hypothesis revision and reformulation (Messick 1993).

When applied to the interpretation of a study, validity is either internal (i.e. can the study results be trusted?), or external (i.e. do the results generalize to other settings?). But validity has a different meaning when applied to the interpretation of an instrument’s scores. In this case, all validity is construct validity, and evidence is collected to support the intended construct from five sources: content, response process, internal structure, relations to other variables and consequences (Table 4) (Messick 1993; American Education Research Association et al. 1999; Downing 2003; Beckman et al. 2005; Cook & Beckman 2006). Realize that not every study will require all sources of validity evidence, and it is likely that some sources of evidence will be more important than others for a given study purpose. Nonetheless, as for any hypothesis, convincing evidence from a variety of sources will strengthen the validity argument.

Qualitative research

The term ‘qualitative research’ relates to features of both study design and method. Qualitative research has matured substantially over recent decades and, increasingly, investigators are combining qualitative and quantitative methods (Rossman & Wilson 1985; Miles & Huberman 1994). A fundamental distinction between quantitative and qualitative research is that data for quantitative research are numbers and data for qualitative research are words (Miles & Huberman 1994; Greenhalgh & Taylor 1997; Fraenkel & Wallen 2005). Other striking differences exist (see Table 2). For example,
in Grounded Theory, new theories are identified as data are collected, whereas in the hypothetical-deductive model common to quantitative research, data are collected to verify or challenge an existing theory (Glaser & Strauss 1995; Kennedy & Lingard 2006). Although all qualitative research methods share similar features, there are dozens of qualitative methods (Miles & Huberman 1994).

Surveys
Surveys ask questions to better understand subject characteristics like behavior, attitude and knowledge. Surveys are administered to a selected sample, responses are gathered and interpreted, and then inferences are made regarding characteristics of the intended population. Surveys can be either cross-sectional (administered at one point in time), or longitudinal (administered at different points in time) (Fraenkel & Wallen 2003). For surveys to be meaningful, the questions should be carefully constructed, the sample should represent the intended population, and the response rate should be adequate—generally > 60% for mail and Internet surveys. Note that surveys overlap with other study designs and methods (Fraenkel & Wallen 2003). For example, determining the internal consistency and interrater reliability of survey instrument scores might constitute a validity study, while correlating survey data with other variables of interest would be association research.

Systematic reviews and meta-analyses
Systematic reviews utilize explicit methods to identify previously published studies to answer a specific scholarly question. A meta-analysis is a subset of systematic reviews that statistically combines results from various studies to provide an overall estimate of the effect (Moher et al. 1999). Systematic reviews on medical education topics are challenging because there are few standardized interventions and assessments and research reporting is often poor. Nonetheless, the quality of systematic reviews on medical education topics can be optimized by identifying a focused scholarly question; being systematic in all reporting elements including literature search, article inclusion and reviewing methods; and clearly answering the original question in the discussion and applying the same framework to each article discussed.

Step 3: Select outcomes
The study intervention is the independent (predictor) variable, whereas the study outcome is the dependent variable. It is important to distinguish outcomes, which are conceptual, from methods (general approaches to assessing a given outcome) and instruments (specific devices for systematically collecting data). For example, to demonstrate learner knowledge (outcome) one could use a multiple-choice test (method), which could be measured using the USMLE Step II (instrument). Notably, there are usually several potential methods and instruments for measuring a given outcome.

Kirkpatrick (1996) observed that outcomes can be separated into four levels (see Figure 1). At the lowest level is reaction, followed by learning, then behavior, and results at the top (Kirkpatrick 1996; Hutchinson 1999). Using a hypothetical curriculum for teaching the management of patients with diabetes, we can develop examples for each of Kirkpatrick’s levels. Surveying students as to how enjoyable the curriculum is would be a Reaction outcome. Using a multiple-choice test to measure student knowledge of diabetes management would be a Learning outcome. Reviewing charts to determine whether students actually ordered tests consistent with diabetes management guidelines would be a Behavior outcome. Finally, determining whether patients managed by students completing the curriculum experienced improvements in glycemic control (compared with baseline values or patients managed by a control/comparison group) would be a hard Result.

Notice that outcomes become more meaningful when progressing from reaction to results (Kirkpatrick 1996). Unfortunately, outcomes also become more difficult to measure when progressing from reaction to results, because the higher the level, the more abundant the confounders that could be contributing to the outcome, and the smaller the effect size (and hence the larger the sample size needed to show a significant effect). It was thus expressed by Shea (2001) that the outcome level which often strikes an appropriate balance between feasibility and meaningfulness is behavior.

So consider the following steps when selecting outcomes for educational projects. First, choose the desired outcome, balancing feasibility with meaningfulness. Second, choose a method for measuring the outcome. Third, choose an instrument appropriate for the chosen method. Also consider whether the instrument has prior evidence of score reliability and validity. If not, then consider conducting a validity study prior to your initially planned study. Last, for
every test or assessment, remember to sample the content domain adequately, since score reliability is proportional to the number of observations and instrument items (DeVillis 1991).

Conclusions

Boy’s definition of scholarship embraces all dimensions of education. Glassick’s standards for assessing scholarship are widely accepted, but research on the quality of medical education studies indicates that published articles often neglect these standards. Mindful of Glassick’s criteria and demonstrated shortcomings in the literature, we proposed a three-step approach to developing scholarly education projects. Refining the statement of study intent (Step 1) requires creating a conceptual framework, reviewing the literature and finding existing gaps in understanding. Understanding and identifying appropriate study designs and methods (Step 2) will substantially improve the quality of scholarly projects. Selecting outcomes (Step 3)—whether at the level of reaction, learning, behavior or results—completes the cycle of scholarship by formalizing the dependent variables as defined in the statement of study intent. We anticipate that applying this systematic approach will improve the understanding and communication of scholarly medical education projects.

Notes on contributors

THOMAS BECKMAN, MD, is Assistant Professor in the Mayo Clinic College of Medicine, Chairman of the Scholarship in Medical Education Group for the Division of General Internal Medicine, and Consultant in the Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.

DAVID COOK, MD MHPE, is Assistant Professor, Chairman of the Medical Education Research Group at the Mayo Clinic College of Medicine, and Senior Associate Consultant in the Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.

References

