AGS HENDERSON LECTURE

DELIRIUM:
APPLYING RESEARCH TO TRANSFORM CARE AT THE BEDSIDE

Sharon K. Inouye, M.D., M.P.H.
Professor of Medicine
Beth Israel Deaconess Medical Center
Harvard Medical School
Milton and Shirley F. Levy Family Chair
Director, Aging Brain Center
Hebrew SeniorLife
Edward Henderson, M.D.
“Hendy”
1806-1973

• Served the American Geriatrics Society for over 20 years

• President, Executive Director, Trustee of the AGS Research Fund

• Credited with bringing AGS from relative obscurity to international prominence
Delirium as an example

Approach to a common geriatric syndrome:

• Identify and measure condition
• Elucidate multifactorial risk factors
• Develop and test interventions
• Create system change to incorporate interventions and improve quality of care
• Disseminate model of care
CASE

Mrs. S is a 78 yo woman (living independently) with diabetes mellitus, arthritis and cataracts, who presents with unstable angina. She is treated with intravenous nitroglycerine, morphine, lidocaine, lorazepam, and ranitidine. A bladder catheter is placed.

Day 2: Cardiac catheterization with angioplasty for continued angina. In evening, pt develops delirium, managed with restraints, lorazepam and haloperidol.

Day 3: Pt develops urinary tract infection with fever and increased confusion. Bladder catheter discontinued; pt incontinent. Sacral skin breakdown noted.

Day 9: Pt remains incontinent, with large sacral pressure sore, and unable to walk or care for herself. Social Work consult for placement.
WHAT IS DELIRIUM?
(Acute Confusional State)

Definition:
• acute decline in attention and cognition

Pearl: Delirium is an important epidemiologic syndrome
• common problem
• serious complications
• often unrecognized
• may be preventable
DSM-IV-TR CRITERIA FOR DELIRIUM

- Disturbance in consciousness with reduced attention
- A change in cognition (e.g., memory deficit, disorientation, language deficit) or perceptual disturbance
- Acute onset and fluctuating course
- Evidence of an underlying medical etiology

Ref: APA; DSM-IV, Text Revision. 2000
EPIDEMIOLOGY OF DELIRIUM

Delirium Rates

Hospital:
- Prevalence (on admission) 14-24%
- Incidence (in hospital) 6-56%

Postoperative: 15-53%

Intensive care unit: 70-87%

Nursing home/post-acute care: 20-60%

Palliative care up to 80%

Mortality

Hospital mortality: 22-76%

One-year mortality: 35-40%

Ref: Inouye SK, NEJM 2006;354:1157-65
IMPACT OF DELIRIUM

Hospital costs (> $8 billion/year)
Post-hospital costs (> $100 billion/year)
 • Institutionalization
 • Rehabilitation
 • Home care
 • Caregiver burden

Aging of U.S. population

COSTS OF DELIRIUM

• In 841 patients, determined total one-year health care costs associated with delirium
• Adjusted average annual costs were 2.5 times higher for patients with delirium
• Total annual costs attributable to delirium were $16,000-$64,000 per patient
• National burden of delirium:

 $40 to 150 billion per year.

RECOGNITION OF DELIRIUM

Previous studies: 32-66% cases unrecognized by physicians

Pearl: We cannot manage delirium or decrease its complications unless we recognize it
NURSES’ RECOGNITION OF DELIRIUM

• Compared nurse recognition of delirium with interviewer ratings (N=797)
• Nurses recognized delirium in only 31% of patients and 19% of observations
• Nearly all disagreements in ratings were due to under-recognition by nurses
• Risk factors for under-recognition: hypoactive delirium; advanced age, vision impairment, dementia

Ref: Inouye SK, Arch Intern Med. 2001;161:2467-2473
DEVELOPMENT
OF A
DELIRIUM INSTRUMENT

CONFUSION ASSESSMENT METHOD (CAM)

- Developed to provide a quick, accurate method for detection of delirium
- For non-psychiatrically trained clinicians
- Both clinical and research settings
- Prospective validation study using criterion standard

SIMPLIFIED DIAGNOSTIC CRITERIA

• Uses 4 criteria assessed by CAM:
 (1) acute onset and fluctuating course
 (2) inattention
 (3) disorganized thinking
 (4) altered level of consciousness

• The diagnosis of delirium requires the presence of criteria:
 (1), (2) and (3) or (4)
VALIDATION OF CAM

<table>
<thead>
<tr>
<th></th>
<th>Site I (n=30)</th>
<th>Site II (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>10/10 (100%)</td>
<td>15/16 (94%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>19/20 (95%)</td>
<td>9/10 (90%)</td>
</tr>
<tr>
<td>Positive predictive accuracy</td>
<td>10/11 (91%)</td>
<td>15/16 (94%)</td>
</tr>
<tr>
<td>Negative predictive accuracy</td>
<td>19/19 (100%)</td>
<td>9/10 (90%)</td>
</tr>
<tr>
<td>Likelihood ratio (positive test)</td>
<td>20.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>
SUPPORTING FEATURES OF DELIRIUM

• Disorientation
• Memory impairment
• Perceptual disturbances (hallucinations, illusions, misperceptions)
• Delusions
• Psychomotor agitation or retardation
• Sleep cycle disturbances
• Inappropriate behavior
CAM SIGNIFICANCE

- Helped to improve recognition of delirium
- Widely used standard tool for clinical and research purposes nationally and internationally
- Validated in over 1000 patients with sensitivity 94% and specificity of 89%
- Translated into at least 12 languages
- Used in over 250 original published studies to date

Ref: Wei LA et al. JAGS 2008;56:823-30
MODIFIED MINI-COG TEST

ORIENTATION
1. Time: Day of Week, Year, Day/Night, Last Meal, Days in Hospital
2. Place: City/State, Hospital, Floor

REGISTRATION
3. Name 3 objects: (apple) (table) (penny)
 Ask the patient all 3 after you have said them.
 Repeat until all 3 are learned.

CLOCK-DRAWING
4. Draw circle, draw numbers, and place hands at “ten past eleven”

RECALL
5. Ask for 3 objects in Q3.

ASSESSMENT FOR INATTENTION

If time to do only one cognitive task, assess attention

- Digit span test (normal: 5F, 3B)
- Days of week backwards
- Months of year backwards
SPECTRUM OF DELIRIUM

Ranging from:

Hypoactive delirium (lethargy, excess somnolence) -- often missed
to:

Hyperactive delirium (agitated, hallucinating, inappropriate)

Pearl: Hypoactive form is more common in older persons (75%) and associated with higher mortality.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Delirium</th>
<th>Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Abrupt</td>
<td>Insidious</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours to days</td>
<td>Months to years</td>
</tr>
<tr>
<td>Attention</td>
<td>Impaired</td>
<td>Normal unless severe</td>
</tr>
<tr>
<td>Consciousness</td>
<td>Fluctuating, reduced</td>
<td>Clear</td>
</tr>
<tr>
<td>Speech</td>
<td>Incoherent, disorganized</td>
<td>Ordered, anomic/aphasic</td>
</tr>
</tbody>
</table>
PATHOPHYSIOLOGY OF DELIRIUM

• Poorly understood
• Functional rather than structural lesion
• Characteristic EEG findings (generalized slowing)
• Hypothesis: final common pathway of many pathogenic mechanisms:
 a. Dysfunction of neurotransmitter systems
 b. Inflammation/cytokines
 c. Impaired cerebral oxidative metabolism
MULTIFACTORIAL MODEL OF DELIRIUM IN OLDER PERSONS

Ref: Inouye SK et al. JAMA 1996; 275:852-857
ETIOLOGY

Dementia
Electrolytes
Lungs, liver, heart, kidney, brain
Infection
Rx—Treatment and withdrawal (ETOH, benzos)
Injury, pain, stress
Unfamiliar environment
Metabolic

Pearl: Addressing the multifactorial etiology is key to managing delirium.

BASELINE VULNERABILITY

Development and Validation of a Predictive Model for Delirium based on Admission Characteristics

INDEPENDENT RISK FACTORS FOR DELIRIUM (N=107)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Adjusted Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision Impairment</td>
<td>3.5 (1.2, 10.7)</td>
</tr>
<tr>
<td>Severe Illness</td>
<td>3.5 (1.5, 8.2)</td>
</tr>
<tr>
<td>Cognitive Impairment</td>
<td>2.8 (1.2, 6.7)</td>
</tr>
<tr>
<td>BUN/Cr Ratio ≥ 18</td>
<td>2.0 (0.9, 4.6)</td>
</tr>
</tbody>
</table>

PRECIPITATING FACTORS

Development and Validation of a Predictive Model for Delirium based on Hospitalization – Related Factors

INDEPENDENT PRECIPITATING FACTORS FOR DELIRIUM

(N = 196)

<table>
<thead>
<tr>
<th>Precipitating Factor</th>
<th>Adjusted Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of physical restraints</td>
<td>4.4 (2.5 - 7.9)</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>4.0 (2.2 - 7.4)</td>
</tr>
<tr>
<td>> 3 medications added</td>
<td>2.9 (1.6 - 5.4)</td>
</tr>
<tr>
<td>Use of bladder catheter</td>
<td>2.4 (1.2 - 4.7)</td>
</tr>
<tr>
<td>Any iatrogenic event</td>
<td>1.9 (1.1 - 3.2)</td>
</tr>
</tbody>
</table>
MEDICATIONS ASSOCIATED WITH DELIRIUM

* Sedative-hypnotics
 Benzodiazepines (Dalmane, Valium)
 Barbiturates
 "Sleepers" (Chloral hydrate)

* Narcotics

* Anticholinergics
 Antihistamines (Benadryl, Atarax)
 Antispasmodics (Belladonna, Lomotil)
 Tricyclic antidepressants
 Antiparkinsonian agents (Cogentin, Artane)
 Antiarrhythmics (Quinidine, Norpace)

Cardiac (Digitalis, Lidocaine)
Antihypertensives (Beta-blockers, Aldomet)

Miscellaneous
 H2-blockers
 Steroids
 Metoclopramide

Lithium
Anticonvulsants
NSAID’s
MINIMIZE PSYCHOACTIVE MEDICATIONS

Pearl: Evaluating drug usage is a high-yield intervention for delirium in the hospital

1) Frequently review medication list
2) Minimize psychoactive medications
 • Avoid PRN’s
 • Use nonpharmacological approaches
 • Substitute less toxic alternatives
 (e.g. antacid or Carafate for H₂ blocker/PPI
 Metamucil/Kaopectate for Lomotil/Imodium)
 • Reduce dosage
3) Re-evaluate chronic medication usage
 • Hospital ideal time to make changes
 • Substrate is not the same
NONPHARMACOLOGICAL SLEEP PROTOCOL

1. Give a 5 minute back rub
2. Give a warm drink (patient’s choice of warm milk or herbal tea)
3. Put on relaxation tapes
4. Allow one hour to assess effectiveness

EFFECTIVENESS OF SLEEP PROTOCOL
(N = 111)

• Feasible, with adherence rate of 74%
• Effective with dose-response relationship
 --quality of sleep correlated with number of parts of protocol received
 --reduced use of sleep medications from 54% to 31% (p<0.002)
• Nontoxic, acceptable to patients
SLEEP

• Schedule medications, vital signs, procedures to allow uninterrupted sleep
• Lights off and decreased noise-level at night
• No naps during the day
EVALUATION AND MANAGEMENT OF DELIRIUM

1. Cognitive Evaluation:

 Mini-Cog and Confusion Assessment Method

 Pearl: You may need to use detective work to determine if acute change (e.g., family member, previous nurse)

2. Search for underlying etiology:

 Physical examination (including neurological exam) and vital signs
 Review medication list (current and preadmission), alcohol history
 Targeted metabolic work-up: CBC, lyes, BUN/Cr, Glucose, LFT’s, Calcium, p02, EKG
 Search for occult infection
 Neuroimaging or LP in < 5% cases
CRITERIA FOR NEUROIMAGING

1. History of recent falls or head trauma
2. Signs of head trauma
3. Focal neurologic changes
4. Fever/acute mental status changes, suspicion of encephalitis
5. No identifiable etiology of acute mental status change

Ref: Inouye SK, NEJM 2006;354:1157-65
DELIRIUM MANAGEMENT
PHARMACOLOGIC APPROACHES

Pearl: Reserve for patients with severe agitation which will:

1. cause interruption of essential medical therapies
 (e.g., intubation)
2. pose safety hazard to patient or staff

Treatment:

• Haloperidol 0.25-0.50 mg po or IM (IV short acting, risk of torsades)
• Repeat dose Q 30 minutes until sedation achieved
 (maximum haloperidol dose 3-5 mg/24 hours)
• Maintenance: 50% loading dose in divided doses over next 24 hours
• Taper dose over next few days
THE YALE DELIRIUM PREVENTION TRIAL

YALE DELIRIUM PREVENTION PROGRAM

Multicomponent intervention strategy targeted at 6 delirium risk factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Impairment</td>
<td>Reality orientation</td>
</tr>
<tr>
<td></td>
<td>Therapeutic activities protocol</td>
</tr>
<tr>
<td>Sleep Deprivation</td>
<td>Nonpharmacological sleep protocol</td>
</tr>
<tr>
<td></td>
<td>Sleep enhancement protocol</td>
</tr>
<tr>
<td>Immobilization</td>
<td>Early mobilization protocol</td>
</tr>
<tr>
<td></td>
<td>Minimizing immobilizing equipment</td>
</tr>
<tr>
<td>Vision Impairment</td>
<td>Vision aids</td>
</tr>
<tr>
<td></td>
<td>Adaptive equipment</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>Amplifying devices</td>
</tr>
<tr>
<td></td>
<td>Adaptive equipment and techniques</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Early recognition and volume repletion</td>
</tr>
</tbody>
</table>

Yale Delirium Prevention Trial

Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention Group (N=426)</th>
<th>Usual Care Group (N=426)</th>
<th>Matched OR (CI) or p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident delirium, n (%)</td>
<td>42 (9.9%)</td>
<td>64 (15.0%)</td>
<td>.60 (.39-.92) p= .02</td>
</tr>
<tr>
<td>Total delirium days</td>
<td>105</td>
<td>161</td>
<td>p=.02</td>
</tr>
<tr>
<td>No. delirium episodes</td>
<td>62</td>
<td>90</td>
<td>p=.03</td>
</tr>
<tr>
<td>Delirium severity score</td>
<td>3.9</td>
<td>3.5</td>
<td>p=.25</td>
</tr>
<tr>
<td>Recurrence rate</td>
<td>13 (31.0%)</td>
<td>17 (26.6%)</td>
<td>p=.62</td>
</tr>
</tbody>
</table>
DELIRIUM PREVENTION TRIAL: SIGNIFICANCE

• Practical, real-world intervention strategy targeted towards evidence-based risk factors
• Targeted, multicomponent strategy works
• Significant reduction in risk of delirium and total delirium days, without significant effect on delirium severity or recurrence

Pearl: Primary prevention of delirium likely to be the most effective treatment strategy
THE HOSPITAL ELDER LIFE PROGRAM (HELP)

A model of care to prevent delirium and functional decline in hospitalized older patients

HELP EFFECTIVENESS: PREVIOUS STUDIES

• Prevented decline in cognitive and physical function at hospital discharge1
• Reduced incident delirium, total delirium days and delirium episodes2

Refs: 1 Inouye SK et al, JAGS 2000;48:1697-706;
2 Inouye SK et al, NEJM 1999;340:669-76
HOSPITAL COST-EFFECTIVENESS RESULTS
(N = 852)

• Intermediate risk patients (72% of sample), HELP resulted in lower overall hospital costs, averaging $831 per patient (range $415-1,689)

• Savings offset intervention costs, thus, HELP is cost-effective for intermediate risk patients

• Savings occur across every cost category (e.g., nursing, room, diagnostic procedures, ICU)

Pearl: In geriatrics, good care is often cost-effective care

Ref: Rizzo JA et al. Medical Care; 2001;39:740-52
LONG-TERM COST EFFECTIVENESS: NURSING HOME COSTS

• One yr follow-up of Delirium Prevention Trial pts
• Intervention did not affect the likelihood of nursing home placement
• Among patients receiving long-term nursing home placement (>100 days), intervention resulted in:
 – Lower total costs ($50,881 vs. $60,327, p=.01)
 – Shorter length of stay (241 vs. 280 days, p<.05)
 – Lower costs per survival day ($148 vs. $175, p<.02)

HELP DISSEMINATION

• HELP National Dissemination Project 1999-2010:
 – over 60 active sites
 – over 25 states and 6 countries

• Potential sites:
 – Contact us, register
 – Receive program materials
 – Ongoing support from dissemination team
HELP DISSEMINATION
(UPMC Shadyside Hospital)

• Found reduced delirium and LOS in 4,763 hospitalized patients over 3.5 years receiving HELP.

• LOS reduced by 0.3 days per patient, for cost savings of $790 per patient on average ($1.3 million/year on one unit).

• Program sustained for over 7 years, and serving >5,000 patients per year

Rubin et al. JAGS 2006;54:969-74
HELP and Fall Prevention

• **ONLY** evidence-based program that can prevent hospital falls (Medicare no-pay condition)
• Altered mental status/delirium is the leading risk factor for falls in the hospital
• At 29 hospitals with HELP, 95% of sites reported a reduction in the rate of falls
• At 3 HELP sites (Maine, Cornell, Moses Taylor), we have received data documenting fall reduction:
 – Site 1: 11.4 to 3.8 per 1000 patient-days
 – Site 2: 4.7 to 1.2 per 1000 patient-days
 – Site 3: 4.2% to 2.4% in 4000 patients/1 yr

Inouye SK. NEJM 2009;360: 2390-3
HELP WEBSITE
http://hospitalelderlifeprogram.org

• Supported by a grant from National Library of Medicine

• Useful components for clinicians:
 – General information on delirium and hospitalization for patients and families
 – Searchable bibliography
 – Information on HELP
 – Links to useful websites on delirium and hospital care
DELIRIUM
HEALTH POLICY IMPLICATIONS

Delirium serves as a marker for quality of hospital care for the elderly

- Often iatrogenic
- Linked to processes of care
- Common, bad outcomes

Delirium serves as a window for identifying quality – improving changes.

NEW DIRECTIONS FOR RESEARCH

• Long-term outcomes: Does delirium lead to dementia?
• Delirium treatment: effective management of delirium once it occurs
• Value of early recognition and treatment
• Cognitive reserve capacity: protective effect of education, diet, activities/exercise
• Pathophysiology: neuroimaging, biomarkers, molecular mechanisms
The Final Pearl

Delirium may provide the unique opportunity for early intervention and prevention of cognitive damage
Unique Aspects of Geriatric Medicine

- Focus on function and quality of life
- Multifactorial etiology/multimorbidity
- Geriatric syndromes
- Unique research approaches
- Translational work from bench to bedside
- Framing healthcare for the next century
“On the Shoulders of Giants”

Acampora, D Foreman, MD Metzger, E
Agostini, JV Givens, JL Mion, L
Alsop, DC Gottlieb, G Morrison, RS
Baker, DI Holford, TF Pisani, MA
Bogardus, ST Horwitz, RI Rizzo, JA
Bradley, EH Jones, RN Rubin, FH
Brown, CJ Kiely, DK Rudolph, JL
Charpentier, P Kuchel, GA Schlesinger, MJ
Cooney, LM Leff, B Siu, AL
Crosby, G Leslie, DL Studenski, S
Cuppes, LA Lipsitz, LA Tinetti, ME
Culley, DJ Lydon, TJ Viscoli, CM
Fick, DM Marcantonio, ER Yang, FM
Fong, TG McAvay, GJ Zhang, Y
“The wind beneath my wings”

My family: Steve Benjamin and Jordan Helfand
My mother: Lily Ann Inouye
In memory of:
Joshua Helfand, Bradley and Mitsuo Inouye